Pharmaceutical Quality – Opportunities and Expectations

Michael Kopcha, PhD, RPh
Director
Office of Pharmaceutical Quality
Center for Drug Evaluation and Research

2017 AAM-CMC Workshop
May 23 – 24, 2017

DISCLAIMER: The views and opinions expressed in this presentation are those of the authors and do not necessarily represent official policy or position of the Food and Drug Administration.
Quality Is the Foundation

QUALITY

SAFETY EFFICACY
Our primary stakeholder
Expectations for Quality

• Quality expectations/standards are the same irrespective of approval process
 – Accelerated vs. Regular, Brand vs. Generic

• Willing to accept inherent risk as long as benefit outweighs the risk

• Expectations for safety, efficacy, AND quality
 – Package insert has no section for quality-related risk
Quality Is a Shared Responsibility

• **FDA’s Goal:** Ensure industry can manufacture products that consistently safely deliver their intended benefit to the patient.

• **Industry:** Understand and manage their manufacturing processes and expand the product/process body of knowledge to facilitate continual improvement (ICH Q10).
Getting There Requires...

• **FDA and industry:**
 – Commitment to a culture of innovation, efficiency, and continual improvement
 – Transparent, risk-informed decisions
 – Communication/cooperation

• **A strategic approach informed by potential quality risks**
 – Information enables confidence in the quality of drug products
 – FDA can allow industry more flexibility, while prioritizing resources towards areas of greater risk
A Culture of Innovation...

Innovation in FDA regulatory approaches:

• Advancing emerging technologies

• Understanding relationships between quality attributes and clinical performance
 – Setting clinically relevant specifications

• Regulatory decisions regarding quality that are well-informed, risk-based, and patient-focused

• A lifecycle approach - structure and processes in OPQ facilitate learning
 – IND to NDA, NDA to NDA supplement, NDA to ANDA
Focus on Emerging Technology

• Recognition that emerging manufacturing technology may lead to improved product quality throughout a product’s lifecycle

• Formation of the Emerging Technology Team
 – Team of subject matter experts available to:
 • Answer questions from industry about planned submissions
 • Help address policy issues related to new manufacturing technology
 • Serve as lead or co-lead on quality assessment team for marketing applications
 – Described in “Advancement of Emerging Technology Applications to Modernize the Pharmaceutical Manufacturing Base: Guidance for Industry” (December 2015)
 – Both the guidance and a corresponding MAPP are being finalized
2015 Approved the first 3D printed drug product
 – Spritam (levetiracetam) for treatment of epilepsy

2015 Approved the first NDA for a breakthrough treatment to treat cystic fibrosis; first continuous manufacturing (CM) process
 – Orkambi (ivacaftor and lumacaftor)

2016 Approved the first Prior Approval Supplement for switching from a batch to a continuous process
 – PREZISTA® (darunavir) Oral Tablets for treatment of HIV-1 infection

• ETT has engaged with numerous companies:
 – Container closure systems, continuous manufacturing, 3D printing, aseptic filling

• For more, visit OPQ’s Emerging Technology Program website
 (https://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/ucm523228.htm)
Applying Clinical Relevance to Quality

• A high quality drug product reproducibly delivers the therapeutic benefit to the patient stated in the label, free of defects and undeclared risks (e.g., contamination)

• **Attributes**
 – Begin with the end in mind
 • Design the product to meet patients’ needs and the intended performance
 – Develop the Quality Target Product Profile (QTPP)
 • Characteristics of a drug product that ideally ensure the desired quality, taking into account safety and efficacy - ICH Q8(R2)
 – Identify “clinically relevant” CQAs
 • Characteristics impacting product quality

• **Specifications**
 – Such as: Dissolution, Impurities, Size/Shape/Delivery/Design
Clinical Relevance and Risk Communication

• Frequent interfaces for risk communication in all stages of Quality Risk Management

• Risk communication should follow ICH Q9
 – With a focus on risk to quality and ultimately risk to clinical performance

• Risk communication also applies to:
 – OPQ communication of quality concerns to OND and OGD for overall risk-benefit assessment
 – OPQ communication to applicants regarding application and inspection concerns
Performing team-based quality assessments of applications inclusive of drug substance, drug product, manufacturing, and facilities.

OPQ - Seamless Integration of Review, Inspection, Surveillance, Policy, and Research

- Drug Substance Experts
- Product Experts
- Process Experts
- Facility Experts

‘One Quality Voice’

Technical Advisors
- OTR
- OPPQ
- OS

Others as needed
Knowledge Management Across the Product Lifecycle

- An integrated **Knowledge Base** allows for:
 - Parity in the quality assessment of brand and generic drugs
 - Consistent quality standards for brand and generic drugs
 - Clearer identification of product and process risks
 - Quick addressment of quality issues
Efficiency in Regulatory Oversight

OPQ is:

• Exploring ways to streamline review documentation to speed application review

• Implementing more frequent review communication
 – Particularly for complex products
 – Learning from experience with new drugs

• Supporting ICH Q12
 – Tools to reward premarket development and post-market continual improvement with regulatory flexibility

• Developing and using multiple surveillance tools to focus resources on facilities and products of highest risk
A Two-Way Street

An agile, flexible pharmaceutical manufacturing sector that reliably produces high quality drugs without extensive regulatory oversight

• CDER’s 2004 vision will take more than just changes at FDA

• Changes must be embraced by industry as well
Increasing Regulatory Efficiency

• When industry demonstrates a commitment to quality (an effective pharmaceutical quality system – ICH Q10):
 – FDA can use that information to inform regulatory decisions
 – Opportunities arise for reduced regulatory burden (submission and inspection)

• A key element of an effective PQS is communication across facilities involved in manufacturing the product (knowledge management, change management)
 – Active communication between applicants and contract facilities can minimize problems for application approval
Increasing Regulatory Efficiency Through Harmonization

- Flexibility in post-approval CMC change management promised by ICH Q8, Q9, and Q10 has not been fully realized

- Different requirements around the world are a disincentive to making improvements to increase process robustness
 - A single manufacturing change can take 3-5 years to gain regulatory approval across all markets
 - Significant implications for product inventory management and cost

- Ideal state: manufacturers encouraged to consistently pursue continual improvement
 - Leads to better assurance of supply and opportunities for innovation
ICH Q12 “Technical and Regulatory Considerations for Pharmaceutical Product Lifecycle Management”

Science- and risk-based approaches for assessment of changes across the product lifecycle

- **Expects**
 - Effective change management, especially across supply chain
 - Enhanced transparency and trust between manufacturer and regulator

- **Encourages use of harmonized tools (new and existing)**
 - Established conditions
 - Proactive product lifecycle management strategy document
 - Post-approval change management protocols
 - Application of Q12 approaches for currently marketed products

- **Goal:**
 - Recognize product and process knowledge (development, experience) by allowing the manufacturer to manage more CMC post-approval changes without the need for prior approval or with only on-site documentation
Understanding the State of Quality and Improving Surveillance

• Better understanding the inventory of pharmaceutical manufacturing facilities

• Robust analytics to guide risk-based scheduling for inspections
 – Inspection history, including inspections by trusted regulatory partners
 – Field Alert Reports/Biologic Product Defect Reports
 – Information on risk specific to product type (e.g., sterile products, narrow therapeutic index drugs)

• Monitoring factors that might predict drug shortage situations
 – Intelligence on firm, facility, product
 – Market share/available alternatives
 – Mechanisms to engage proactively
Transparency and Communication

• OPQ aims to provide clear guidance to set transparent expectations regarding applications and CGMPs

• Transparency in inspections
 – New Inspection Protocol Project
 • New approaches to quantify findings of inspection
 • Documents deficiencies and areas exceeding minimum expectations
 – More timely communication to facility owners post-inspection
 • Possible by Program Alignment & CDER/ORA Concept of Operations
 • More timely remediation of problems
 • More timely decision-making regarding the potential need for an alternate facility
Transparency and Communication

INDUSTRY FDA

• Frequency of FDA surveillance inspections is based on various risk factors
 – Inspectional history, time since last inspection, product or process complexity

• What is the state of quality *between* inspections?
 – An effective PQS provides a foundation for regulatory flexibility
 – Inspection reports from capable regulatory partners under Mutual Recognition Agreement
 – Quality metrics
 • Provide insight regarding the state of quality for product and facility
 • Assessing next steps for the QM program based on stakeholder feedback
Patients/Consumers are the ultimate beneficiaries of a focus on quality

Fewer recalls, fewer quality-related shortages
Final Thoughts

FDA seeks a future state in which...
- Manufacturers are incentivized to:
 - Develop and maintain an effective pharmaceutical quality system
 - Seek continual improvement
 - Implement modern and innovative manufacturing technologies
 - Commit to a culture of quality

- FDA’s approach to regulatory oversight:
 - Achieves more effective quality assessment through risk-based approaches and knowledge management
 - Routinely considers risk in the context of clinical performance
 - Has in-depth insight into the state of manufacturing
 - Uses robust analytics and surveillance techniques to proactively engage with firms to minimize drug shortages and recalls
THANK YOU